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Scale-space edge detection algorithms in human and machine vision

1) Lindeberg (1998): Machine vision algorithm 3) Mcllhagga & May (2012): Blur detection by 5) May & Georgeson (2007): Test of 2nd-
humans derivative based edge detection in human
image —\/\\ gradient

vision
« Multiple channels with J_ A 0.5
different scales, o apply Gaussian o

1st derivative

« Many edge detection models in biological vision begin by filtering the
image with a 2nd-derivative operator (Marr & Hildreth, 1980; Watt &

operator with . Morgan, 1985; Georgeson, 1992; Kingdom & Moulden, 1992)
soale @ s N ’ S ol « These models predict that adding a linear ramp to an edge should not
. . ° Servers see a sharp edge o change its appearance
= - Detect edges by looking for peaks in scale-space next to a Gaussian-blurred 02|
— » Position of peak along “spatial position” dimension edge, both with added noise >
(¢)) . . anc L L L L L
© gives the Spatlal pOSItlon of the edge « Asked which is the blurred edge 0015 -0.01 -Ovool\ilodel Deocision Vaor'i?;le 0.01 0.015 Positive edge Positive ramp Edge + ramp Positive edge Negative ramp Edge + ramp
O et “ » ] : .
» ¢ POSltlon Of peak a|0n9 Scale dlmenS|On QlVeS . . . Figure 5. How well the optimal edge detector model accounts for ) — )
the blur of the edge  Simulations of the task with observer KAM’s probability correct. The x axis plots the decision Stimulus — Stimulus
’ 3 variable for the optimal model, and the black curve gives the
ﬁ MC”hagga S (201 1 ) Optlmal model’s probability correct as a function of the decision variable.
Spatial position a|90r|thm eXplaln human The red jagged line shows the human observer's probability
. correct, as a function of the model decision variable. This was . .
performance Wlth remarkable calculated as follows. For each value of x, we selected trials in IF;:I(;E::ance _/_ + / —_ / Ir;:grfmi::ance _/_ + \
accuracy on a trial-by-trial baSiS which the model decision variable was near x, and then calculated
the observer’s probability correct within that set of trials.
Reference Reference " n _ N s N _
. . . . . . . . . erivative ( 5 —_— | = erivative { 5 —
Lindeberg, T. (1998). Edge detection and ridge detection with automatic Mcllhagga, W.H. & May, K.A. (2012). Optimal edge filters explain human profile — ——— | profie — jAE
scale selection. International Journal of Computer Vision, 30, 117-154 blur detection. Journal of Vision, 12(10):9, 1-13
2nd 2nd
derivative AV 4+ — = AVV derivative »AVV 4+ | — | = AVV
profile profile

2) Mcllhagga (2011): Optimal linear edge 4) Georgeson, May, Freeman & Hesse (2007):

. . - « But adding a ramp with
detection filter Blur matChlng by humans opposite polarity to the edge -
| perceive
_ , o - Observers see a Gaussian-blurred edge and a blurred edge with a makes the edge look much o I blurring
« Corrected errors in Canny’s (1986) derivation non-Gaussian profile sharper g 1 &
* Modelled image noise as white noise, with flat power spectrum, > + They adjust the Gaussian edge until it looks as blurred as the other edge « This rules out any model that :t; &
* Modelled surrounding edges as brown noise, with power spectrum, %/« - Both stimuli are noise-free, so Mcllhagga’s optimal algorithm reduces to starts off by applying a 2nd 8 osf foeied o
where w is spatial frequency Lindeberg’s algorithm derivative operator to the g i
. ge) = \" mode/
« Decompose filter into whitening filter, W(w), followed by detection filter K(w) . But Georgeson et al. found that performance was best explained by a Image © 0.25 ° Sﬂbje::KAM
F(o) =W (@)K (o) where W (o) = i §ca|e-space algorithm s+imilar to Lindeberg’s but with a nonlinear operation « (Georgeson et al.’s (2_007) N;* S _f..ﬁ‘c‘,bé?{;tc':"ff?amp
\/Cz + 202 in each channel (the N;* model) model correctly predicts the 1 075 05 025 0 025 05
0 ectifiod effect of addin g the ramp ramp gradient / peak gradient of fixed edge

* For high-contrast Gaussian edges, optimal K(w) is whitened Gaussian edge: TERE 1 derivative 1% derivative 3¢ derivative

_ ﬁf— —/ W v 15 References
K(w)= W(w)(g) Gauss(w, o) o Georgeson, M. A. (1992). Human vision combines oriented filters to

compute edges. Proceedings of the Royal Society of London B, 249,

«  So optimal filter given by e el ieve ZV"V‘;t‘;esrc‘;j‘gV; 235-245
. Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (2007).
F(o)=— L2 Gauss(®,0) ois the channel scale = \/o2+c? From filters to features: Scale—space analysis of edge and blur coding
o @ _ in human vision. Journal of Vision, 7(13):7, 1-21
»  For low image noise (1, = 0), F(w) is a Gaussian 1st derivative filter, and ) Th”e Nt3 mofdglﬁcorretctlél predlc]:clls blur matches by humans for a large Kingdom, F. & Moulden, B. (1992). A multi-channel approach to brightness
Mcllhagga's optimal edge detection algorithm is identical to Lindeberg’s coliection ot different edge protiies coding. Vision Research, 32, 1565—-1582
e , . < *  Why does Mcllhagga's optimal model fail to predict the data in this study’? Marr, D. & Hildreth, E. (1980). Theory of edge detection. Proceedings of
* _Unﬁke In qudeberg S a'QOJ!thm, Mcllhalg?ta S fllteﬂr]s adapt t_o Ch?_ngels His filters are the optimal linear filters: Maybe in low noise conditions, tl;e Royal Sociéty o(f Lom;on B 2r30/7 1879—217 J
in image noise or surrounding image clutter, so they remain optima ) : TP - - ’ ’
Georgeson et al.’s nonlinear filter is better than the best linear filter May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters
Reference Reference perceived edge blur and contrast: A critical test for derivative-based
Mcllhagga, W. (2011). The Canny edge detector revisited. International Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (2007). models of edge coding. Vision Research, 47, 172_1__1_731 _ _
Journal of Computer Vision, 91, 251-261 From filters to features: Scale—space analysis of edge and blur coding Watt, R. J. & Morgan, M. J. (1985). A theory of the primitive spatial code in

in human vision. Journal of Vision, 7(13):7, 1-21 human vision. Vision Research, 25, 1661-1674

May & Hess (2008): Filter-rectify-filter algorithm for contour integration

Snake detection Ladder detection

» Filter-rectify-filter at a range of orientations
« If 1st- and 2nd-stage filters are parallel, the algorithm detects “snakes” Stimulus Stimulus
« If 1st- and 2nd-stage filters are orthogonal, the algorithm detects “ladders”

* Applying a threshold to the 2nd-stage filter output generates zero-
bounded response distributions (ZBRs) that extend across space and
orientation, tracing out the contours

« 3D representation allows contours to overlap spatially without joining up
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Squared 1st-order output 1st-order filter output

» Parameters of the model are the filter parameters and the threshold

Squared 1st-order output 1st-order filter output

« Scale of 1st-stage filter should match stimulus elements
« Scale of 2nd-stage filter should match spacing between the elements

« With one set of physiologically plausible parameters, the model can
account for human performance on 176 experimental conditions in
which the following contour parameters were varied: contour curvature,
element orientation jitter, element orientation bandwidth properties
(Hansen, May & Hess, under review)
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